Please use this identifier to cite or link to this item:
Title: A solution of the 4th clay millennium problem about the Navier-Stokes equations.
Authors: Kyritsis, Konstantinos 
Keywords: Mathematics
Issue Date: 25-Feb-2018
Publisher: Preprint TEI OF EPIRUS
Abstract: In this paper it is solved the 4th Clay Millennium problem about the Navier-Stokes equations, in the direction of regularity. It is done so by utilizing the hypothesis of finite initial energy and by applying the regularity of the Poisson equation which is a well- studied linear PDE, involving the also well studies harmonic functions. The Poisson equation either in scalar or vector form, relates many magnitudes of the flow, like pressures and velocities, velocity and vorticity and velocities and viscosity forces. It is also proved 5 new necessary and sufficient conditions of regularity based on the pressures, viscosity forces, trajectories lengths, pressure forces etc. The final key result to derive the regularity is that the pressures are bounded in finite time intervals, as proved after projecting the work of the pressures forces on specially chosen bundles of paths.
Appears in Collections:Εισηγήσεις

Files in This Item:
File Description SizeFormat 
FinalSolurtion_4thClay250218.pdf658.01 kBAdobe PDFView/Open
Show full item record

Google ScholarTM


Items in CRIS are protected by copyright, with all rights reserved, unless otherwise indicated.