Please use this identifier to cite or link to this item: http://cris.teiep.gr/jspui/handle/123456789/1590
Title: An Axiomatic System for a Physical or Digital but Continuous 3-Dimensional Euclidean Geometry, Without Infinite Many Points
Authors: Kyritsis, Konstantinos 
Keywords: Foundations of Mathematics, Geometry
Issue Date: 8-Oct-2017
Publisher: World Journal of Research and Review (WJRR) ISSN:2455-3956,
Source: K.E. Kyritsis An Axiomatic System for a Physical or Digital but Continuous 3-Dimensional Euclidean Geometry, Without Infinite Many Points World Journal of Research and Review (WJRR) ISSN:2455-3956, Volume-5, Issue-4, October 2017 Pages 31-43
Abstract: This paper is concerned with finding an axiomatic system, so as to define the 3-dimensional Euclidean space, without utilizing the infinite, that can imply all the known geometry for practical applied sciences and engineering applications through computers, and for more natural and perfect education of young people in the Euclidean geometric thinking. In other words by utilizing only finite many visible and invisible points and only finite sets, and only real numbers with finite many digits, in the decimal representation. The inspiration comes from the physical matter, rigid, liquid and gaseous, which consists of only finite many particles in the physical reality. Or from the way that continuity is produced in a computer screen from only finite many invisible pixels. We present such a system of axioms and explain why it is chosen in such a way. The result is obviously not equivalent, in all the details, with the classical Euclidean geometry. Our main concern is consistency and adequacy but not the independence of the axioms between them. It is obvious that within the space of a single paper, we do not attempt to produce all the main theorems of the Euclidean geometry, but present only the axioms.
Description: It is the first digital Axiomatic System for the Euclidean Geometry, after Euclid, Cartesious, and Hilbert
URI: http://cris.teiep.gr/jspui/handle/123456789/1590
ISSN: 2455-3956,
Appears in Collections:Δημοσιεύσεις σε Περιοδικά

Files in This Item:
File Description SizeFormat 
WJRR_Digital_Euclidean_Kyrisis.pdf453.19 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check


Items in CRIS are protected by copyright, with all rights reserved, unless otherwise indicated.