Please use this identifier to cite or link to this item:
Title: Coarse-Grain optimization and code generation for embedded multicore systems
Authors: Γούλας, Γεώργιος 
Βαλουξής, Χρήστος 
Αλεφραγκής, Παναγιώτης 
Βώρος, Νικόλαος 
Oey, Oliver 
Stripf, Timo 
Bruckschloegl, Thomas 
Becker, Jurgen 
Γκόγκος, Χρήστος 
El Moussawi, A. 
Naullet, M. 
Yuki, T. 
Keywords: Embedded computer systems;Multiprocessors
Issue Date: Sep-2013
Abstract: As processors and systems-on-chip increasingly become multicore, parallel programming remains a difficult, time-consuming and complicated task. End users who are not parallel programming experts have a need to exploit such processors and architectures, using state of the art fourth generation of high programming languages, like Scilab or MATLAB. The ALMA toolset addresses this problem by receiving Scilab code as input and produces parallel code for embedded multiprocessor systems on chip, using platform quasi-agnostic optimisations. In this paper, coarse grain parallelism extraction and optimization issues as well as parallel code generation for the ALMA toolset are discussed.
Description: DOI: 10.1109/DSD.2013.48
Appears in Collections:Δημοσιεύσεις σε Συνέδρια

Show full item record

Google ScholarTM


Items in CRIS are protected by copyright, with all rights reserved, unless otherwise indicated.